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Abstract
We derive completeness criteria for sequences of functions of the form f (xλn),
where λn is the nth zero of a suitably chosen entire function. Using these
criteria, we construct complete nonorthogonal systems of Fourier–Bessel
functions and their q-analogues, as well as other complete sets of q-special
functions. We discuss connections with uncertainty principles over q-linear
grids and the completeness of certain sets of q-Bessel functions is used to
prove that, if a function f and its q-Hankel transform both vanish at the points
{q−n}∞n=1, 0 < q < 1, then f must vanish on the whole q-linear grid {qn}∞n=−∞.

PACS numbers: 02.10.Ox, 02.30.Gp, 02.30.Nw
Mathematics Subject Classification: 05A30, 33D45, 42C30, 94A11

1. Introduction

1.1. The Heisenberg uncertainty principle from quantum mechanics

It can be reformulated as a proposition saying that if a function is ‘small’ outside an interval
of length T and its Fourier transform is ‘small’ outside an interval of length �, then the
product T � must be bigger than a certain positive quantity. This idea has been used
not only in quantum mechanics, but also in time-frequency analysis, signal recovering and
partial differential equations. Variations of the Heisenberg uncertainty principle include more
quantitative versions and propositions related to the nature of the support of a function. Integral
transforms other than the Fourier transforms have also been considered and discrete forms
of uncertainty principles constitute a topic of particular interest. Every uncertainty principle
is an instance of a metaproposition which says that a function and its transform cannot be
simultaneously ‘small’.
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1.2. Completeness of sets of functions

Over the years, attention has been given to sequences of functions that, although not being
necessarily a basis of a given space, do however posses the property that every function in
that space can be approximated arbitrarily closely by finite combinations of those sequences.
These sequences are said to be complete and, in the presence of the classical Fourier setting,
they correspond, via Fourier duality, to uniqueness sets in the Paley–Wiener space.

Following the pioneering work of Paley, Wiener and Levinson, a considerable amount
of research has appeared, concerning completeness properties of the complex exponentials
{eiλnt }, giving rise to the theory of nonharmonic Fourier series [21], which provide a theoretical
framework for irregular sampling theory.

An important completeness result in the classical Fourier setting states that, if {λn} is
the set of zeros of a function of sine type, then the system {eiλnt } is complete in L2[−π, π ]
[21, p 145]. In such a context, the set of zeros of a function of sine type can be seen as a
deformation of the set of zeros of the function sine, {πn}. Using this as a model, it is natural to
try to understand completeness properties of sequences defined in an analogous way, replacing
the complex exponential with other special functions. With this in mind, define a sequence
{fn} of functions by

fn(x) = f (λnx) (1)

where f is an entire function and λn is the nth zero of another entire function g. The task is
to find conditions in f and g that imply completeness of {fn}. Such a question is particularly
interesting when, for some sequence {λn}, it is known that the functions in (1) form an
orthogonal basis for a given space. In this case, the functions in the general case can be seen
as a deformation of such a basis. This idea has very classical roots. It is foremost inspired by
Boas and Pollard, who studied in [8] sequences of nonorthogonal Fourier–Bessel functions
{Jν(λnx)} where λn is not necessarily the nth zero of Jν . A good summary of classical methods
to study general complete systems of special function is Higgins monograph [15]. A reading
of this monograph and a confrontation with the revised edition of Young’s book [21] gives
a historical feeling of how the completeness problems inspired much of the modern frame
theory. The recent developments concerning expansions in Fourier series on q-linear grids
[9, 5] and the construction of q-sampling theorems [1, 2, 4, 17] motivated the necessity of
developing methods to prove completeness of these systems.

The purpose of our work is twofold. We will first derive completeness criteria for
sequences of the type (1) and illustrate them with several examples involving special and
q-special functions. As a second goal of the paper we will obtain uncertainty principles for
functions defined over q-linear grids, by proving two statements about a certain q-analogue of
the Hankel transform, introduced by Koornwinder and Swarttouw in [19].

1.3. Outline of the paper

Section 2 recalls some function theoretical definitions and a result is proved assuring, under
certain conditions, the Lp[µ,X], p � 1, completeness of the sequence {f (λnx)}, when λn is
the nth zero of g, a suitably chosen entire function, both f and g of order less than one. The
proof of this criterion is simple and very classical in nature, using classical entire function
theory. The main argument rests on an application of the Phragmén-Lindelöf principle in
a proper setting. The general form of the functions f and g is restricted in such a way
that it fits to many of the classical and q-classical special functions. Then we provide some
examples. and to the discrete dqx measure associated with Jackson’s q-integral. Within this
setting, our completeness criteria will be illustrated with sets of nonorthogonal Fourier–Bessel
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functions, Euler infinite products and Jackson’s second and third q-Bessel functions. The most
significative among these examples is that using the third Jackson q-Bessel function, since the
completeness result can be seen as a deformation of the orthogonal case.

In section 3, we obtain a version of the completeness criterion for functions of order less
than two. Specifying the measure dµ to the usual dx measure in the real line we apply the
result to Bessel functions. We stress that the completeness criteria from sections 2 and 3
are not contained in Higgins monograph [15] and an extensive search in the overall available
literature seems to support that they are new.

In the final section, we study uncertainty principles over q-linear grids, a topic that, at a
first glance, may seem to be unrelated to the previous one. However, a relation does exist. The
section begins with a brief paragraph about uncertainty principles. Then, the relevant known
facts about the q-Hankel transform are presented and using a completeness result for q-Bessel
functions of the third type from the previous section, we derive a vanishing theorem stating
that a L1

q(R
+) function and its q-Hankel transform cannot be both simultaneously supported

at the q-linear grid {qn}∞n=−∞ ∩ (0, 1) = {qn}∞n=1, without vanishing on the equivalent classes
of L1

q(R
+) (that is, on the whole grid {qn}∞n=−∞). The discussion is then complemented with

an uncertainty principle of the type studied in [8] by Donoho and Stark, using the concept
of ε-concentration. Here the main instruments used in the proof are a proposition due to de
Jeu [10] and an estimate on the third Jackson q-Bessel function from [12]. Our uncertainty
principles are different from the q-analogue of the Heisenberg uncertainty relations provided
in [7].

2. Completeness criteria

The unifying theme through this work will be the Lp-completeness of a sequence of functions.
A sequence of functions {fn} is complete in Lp[µ,X] provided the relations∫

X

yfn dµ = 0

for n = 1, 2, . . ., with y ∈ Lp[µ,X] and 1/p + 1/q = 1, imply y = 0 almost everywhere.
If X is a finite interval, then Lp[µ,X] ⊂ L1[µ,X], p � 1, and completeness in L1[µ,X]
carries with it completeness in Lp[µ,X], p � 1. We will borrow terminology from Boas and
Pollard and say that a set is complete L[µ,X] if it is complete in L1[µ,X].

Some facts from the classical entire function theory will be used in this section. The
maximum modulus of the entire function f is defined as

M(r; f ) = max
|z|=r

|f (z)|
and the order of f as

�(f ) = lim
r→∞

log log M(r; f )

log r
. (2)

In the case where f is a canonical product with zeros r1, r2, . . . , the order of f is equal to the
greatest lower bound of all the τ for which the series

∞∑
n=1

1

|rn|τ
converges. From this it is easy to verify that if A ⊂ B then

�

[ ∞∏
n∈A

(
1 − z

rn

)]
� �

[ ∞∏
n∈B

(
1 − z

rn

)]
. (3)
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The proof of the main result requires the following form of the Phragmé n-Lindelöf principle
[21].

If the order of an entire function f is less than σ and f is bounded on the limiting rays of
an angle with opening π/σ then f is bounded on the region defined by the rays.

Our general setting is constituted by two nonnegative sequences of real numbers (an) and
(bn), defining two entire functions f and g by means of the power series expansions

f (z) =
∞∑

n=0

(−1)nanz
2n (4)

and

g(z) =
∞∑

n=0

(−1)nbnz
2n. (5)

Assume that the zeros of f and g are real, simple, and that there exist a countable infinite
number of them. Denote by ζn the nth positive zero of f and denote by λn the nth positive
zero of g. Our first result is the following

Theorem 1. Let µ be a real positive measure. If the order of f and g are less than one, then
the sequence {f (λnx)} is complete L[µ, (0, 1)] if, as n → ∞,

an

bn

→ 0. (6)

Proof. Let y ∈ L[µ, (0, 1)] such that for n = 1, 2, . . .∫ 1

0
y(x)f (λnx) dµ(x) = 0 (7)

and set

h(w) = H(w)

g(w)
(8)

where

H(w) =
∫ 1

0
y(x)f (wx) dµ(x). (9)

The idea of the proof is to show that h is constant and conclude from it that y must be null
almost everywhere. The proof is not very long but, for clarity purposes, we organize it in three
straightforward steps.

Step 1. The function h is entire and �(h) � 1.

Because of its continuity, f is bounded on every disc of the complex plane. Therefore,
the maximum of f on a disc of radius r exists and the inequality

M(r;H) � M(r; f )

∣∣∣∣
∫ 1

0
y(x) dµ(x)

∣∣∣∣ (10)

holds. From this we infer that the integral defining H converges uniformly in compact sets.
Condition (7) forces every zero of g to be a zero of H and the identity (8) shows that h is an
entire function with less zeros than H; since all functions are of order less than one, then they
can be written as canonical products. By (3), the order of h is less or equal to the order of H.
On the other side, the order of H is less or equal to the order of f . This becomes clear using
(2) and inequality (10). It follows that ρ(h) � ρ(f ) < 1.
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Step 2. The function h is constant.

Condition (6) implies the existence of a constant A > 0 such that an � Abn. Then |x| � 1
gives

f (itx) =
∞∑

n=0

ant
2nx2n �

∞∑
n=0

Abnt
2nx2n � A

∞∑
n=0

bnt
2n = Ag(it).

Taking into account that µ is a positive-defined measure, this inequality allows to estimate the
integral in (8) ∣∣∣∣

∫ 1

0
y(x)f (itx) dµ(x)

∣∣∣∣ � A|g(it)|
∫ 1

0
|y(x)| dµ(x)

or equivalently

|h(it)| � A

∫ 1

0
|y(x)| dµ(x).

That is, h is bounded on the imaginary axis. By step 1, �(h) < 1. The Phragmén–Lindelöf
theorem with σ = 1 shows that h is bounded in the complex plane. By Liouville theorem h is
a constant.

Step 3. The function y is null almost everywhere.

Step 2 shows the existence of a constant C such that h(w) = C for every w in the complex
plane. Rewrite this as∫ 1

0
y(x)f (wx) dµ(x) − g(w)C = 0.

Use of the series expansion for f (wx) and g(w) gives
∞∑

n=0

(−1)n
[
an

∫ 1

0
g(x)x2n dµ(x) − Cbn

]
w2n = 0

by the identity theorem for analytical functions,

an

bn

∫ 1

0
y(x)x2n dµ(x) = C. (11)

On the other side, x < 1 implies∣∣∣∣an

bn

∫ 1

0
y(x)x2n dµ(x)

∣∣∣∣ � an

bn

∣∣∣∣
∫ 1

0
y(x) dµ(x)

∣∣∣∣ . (12)

Taking the limit when n → ∞, (6) and (11) show that C is null. As a result, for n = 1, 2, . . .,∫ 1

0
y(x)x2n dµ(x) = 0.

Finally, the completeness of x2n in L[µ, (0, 1)] (by the Müntz-Szász theorem) shows that
y = 0 almost everywhere. �

Before considering applications of theorem 1 it is convenient to recall that if a function is
given in its series form

f (z) =
∞∑

n=0

anz
n

then the order �(f ) is given by

�(f ) = lim
n→∞ sup

n log n

log(1/|an|) . (13)
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2.1. q-special functions

2.1.1. Basic definitions. Consider 0 < q < 1. In what follows, the standard conventional
notations from [6, 13], will be used

(a; q)0 = 1, (a; q)n =
n∏

k=1

(1 − aqk−1),

(a; q)∞ = lim
n→∞(a; q)n, (a1, . . . , am; q)n =

m∏
l=1

(al; q)n, |q| < 1,

Jackson’s q-integral in the interval (0, a) and in the interval (0,∞) are defined, respectively,
by ∫ a

0
f (t) dq t = (1 − q)a

∞∑
n=0

f (aqn)qn (14)

∫ ∞

0
f (t) dq t = (1 − q)

∞∑
n=−∞

f (qn)qn. (15)

The q-difference operator Dq is

Dqf (x) = f (x) − f (qx)

(1 − q)x
. (16)

These definitions appear in the formula of q-integration by parts∫ 1

0
G(qx)[Dqf (x)] dqx = f (1)G(1) − f (0)G(0) −

∫ 1

0
f (x)DqG(x) dqx. (17)

We will denote by L
p
q (X) the Banach space induced by the norm

‖f ‖p =
[∫

X

|f (t)|p dq t

] 1
p

.

There are three q-analogues of the Bessel function, all of them due to F H Jackson and
denoted by J (1)

ν (x; q), J (2)
ν (x; q) and J (3)

ν (x; q). The third Jackson q-Bessel function has
appeared often in the literature under the heading The Hahn–Exton q-Bessel function. A
well-known formula usually credited to Hahn displays J (2)

ν (x; q) as an analytical continuation
of J (1)

ν (x; q). Therefore, just the second and the third q-analogues are considered. Their
definition, in series form, is

J (2)
ν (x; q) = (qν+1; q)∞

(q; q)∞

∞∑
n=0

(−1)n
qn(ν+1)

(qν+1; q; q)n
x2n+ν (18)

J (3)
ν (x; q) = (qν+1; q)∞

(q; q)∞

∞∑
n=0

(−1)n
qn(n+1)/2

(qν+1; q; q)n
x2n+ν . (19)

Very recently, Hayman [14] obtained an asymptotic expansion for the zeros of J (2)
ν . For entire

indices, the functions J (3)
n (x; q) are generated by the relation, valid for |xt | < 1,

(qxt−1; q)∞
(xt; q)∞

=
∞∑

n=−∞
J (3)

n (x; q)tn. (20)

The Euler formula for the series form of an infinite product will be critical on the remainder:

(x; q)∞ =
∞∑

n=0

(−1)n
qn(n−1)/2

(q; q)n
xn. (21)
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2.1.2. Complete sets of q-special functions. Theorem 1 is very convenient to be applied to sets
of q-special functions. More often than not, these functions are of order zero, corresponding
to the situation where there is no restriction on the behaviour of the zeros. The q-integral (14)
is a Riemann–Stieltjes integral with respect to a step function having infinitely many points of
increase at the points qk , with the jump at the point qk being (1 − q)qk .

Since (21) displays an easy relation between the zeros of a function and its series form,
we will use it first, for illustration purposes, to construct complete (nonorthogonal) sets of
infinite products.

Example 1. The sequence of infinite products
{(

q− n
2 +1z2; q

)
∞, n = 0, 1, . . .

}
forms a

complete set in Lq(0, 1). For a proof of this take f (x) = (qx2; q)∞ and g(x) = (x2; q)∞.
Using Euler’s formula (21) one recognizes the setting of theorem 1 with

an = q
n(n+1)

2

(q; q)n
bn = q

n(n−1)

2

(q; q)n
.

Clearly,

lim
n→∞

an

bn

= 0.

Using (13) a short calculation recognizes f and g as functions of order zero. By theorem 1 it
follows that {(qλnx

2; q)∞} is complete in Lq(0, 1), where λn is the nth zero of (x2; q)∞, that
is, λn = ±q− n

2 , n = 0, 1, . . . .

Our next examples of complete sets, defined via the third Jackson q-Bessel function, are
of the form J (3)

ν (qxλn; q). It is well known that, denoting by jnν(q
2) the nth zero of J (3)

ν , we
have the orthogonality relation∫ 1

0
xJ (3)

ν (qxjnν(q
2); q2)J (3)

ν (qxjnν(q
2); q2) dqx = 0, (22)

if n �= m. It was proved in [3] that the system
{
x

1
2 J (3)

ν (qxjnν; q2)
}

forms an orthogonal basis
of the space L2

q(0, 1), by means of a q-version of a Dalzell criterion. In the last section of [3]
we proved the case (a) of the next theorem. The case (b) will be used in section 4 of this paper.

Example 2. If ν > −1, the sequence
{
J (3)

ν (xλn; q2)
}

is complete Lq(0, 1) if: (a) λn = qj (3)
n,α ,

where j (3)
n,α is the nth zero of the function J (3)

α (x; q2); (b) α > −1 and λn = q−n, n = 0, 1, . . . .

Again we can build up the setting of theorem 1. Indeed, it was proved in [18] that the
roots of the third Jackson q-Bessel function are all real, simple and with countable cardinality.
To prove (a) consider f and g defined as

f (x) = x−ν(q2; q2)∞
(q2ν+2; q2)∞

J (3)
ν (x; q2), g(x) = x−α(q2; q2)∞

(q2α+2; q2)∞
J (3)

α (q−1x; q2).

Both f and g are functions of order 0. Consequently, theorem 1 holds with

an = qn(n+1)

(q2u+2; q2; q2)n
, bn = qn(n+1)−2n

(q2α+2; q2; q2)n
.

To prove case (b) choose f as in (a) and g(x) = (x2; q2)∞. Expand g by means of the series
representation (21). The result follows in a straightforward manner from theorem 1.

Now we will see the J (2)
ν (x; q) version of the last example. The functions J (2)

ν (x; q)

are not orthogonal like the J (3)
ν (x; q), but Rahman [20] was able to find a biorthogonality

relation, involving J (2)
ν (x; q) and J (1)

ν (x; q), that is reminiscent of (22). We will obtain
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the completeness property for the same range as in example 2. However, we will need a
preliminary lemma. The required lemma is the q-analogue of theorem 5 in [8].

Lemma. Let λn define a sequence of real numbers. For every ν > −1 , if the sequence{
x−ν−1J

(2)
ν+1(qλnx; q2)

}
is complete Lq(0, 1) then

{
x−νJ (2)

ν (qλnx; q2)
}

is also complete
Lq(0, 1)

Proof. Let y(x) ∈ Lq(0, 1) such that for every n = 1, 2 . . .∫ 1

0
y(x)x−νJ (2)

ν (λnqx; q2) dqx = 0. (23)

The q-difference operator (16) acting on the power series (18 ) gives

Dq

[
x−νJ (2)

ν (λnx; q2)
] = −λnx

−νqν+1J
(2)
ν+1(λnxq; q2). (24)

Now, use the q-integration by parts formula (17) and (24) to obtain the identity

∫ 1

0
y(x)x−νJ (2)

ν (λnqx; q2) dqx (25)

= qν+1λn

∫ 1

0
x−ν−1J

(2)
ν+1(qλnx; q2)

[
x

∫ x

0
(qλnt)

νy(t) dq t

]
dq t. (26)

By (23), the expression (26) is zero for every n = 1, 2, . . . . Under the hypothesis,{
x−ν−1J

(2)
ν+1(qλnx; q2)

}
is complete in Lq(0, 1). Clearly x

∫ x

0 y(t) dq t ∈ Lq(0, 1) and thus,
for m = 1, 2, . . . ,∫ qm

0
y(t) dq t = 0. (27)

This implies y(qm) = 0 for every m = 1, 2, . . . . �

Example 3. If ν > −1, the sequence J (2)
ν (qxλn; q2) is complete Lq(0, 1) if: (a) λn = j (2)

nα ,

where j (2)
nα is the nth zero of the function J (2)

α (x; q2) and α > −1; (b) λn = q−n/2, n = 0, 1, . . .;
First we remark that in [16] the author shows that the roots of the second Jackson q-Bessel

function are all real and simple and that there exists a countable infinite number of them.
Then use theorem 1 as in a similar fashion as in the previous examples to establish (a) when
ν < α + 2. A simple iteration of lemma 1 yields the result when α > −1. On the other hand,
(b) follows directly from theorem 1 choosing g(z) = (z2; q4)∞.

3. Functions of order less than two

Theorem 1 can be extended to the bigger class of entire functions of order less than two.
However, this requires a restriction on the behaviour of the zeros. With the same notational
setting of the preceding theorem, the following holds.

Theorem 2. If the order of f and g are less than two, then the sequence {f (λnx)} is complete
L[µ, (0, 1)] if, together with (6), the following condition holds:

λn � ζn.

Proof. Consider h defined as in (8). The proof goes along the lines of the proof of theorem 1.
Only step 2 requires a modification because now �(h) < 2. The way to compensate this is to
make the estimates along smaller regions of the complex plane. Consider the angles defined
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by the lines arg z = ±π
4 and arg z = ± 3π

4 . These lines are the bounds of an angle of opening
π
2 . If z belongs to one of the lines, then z2 belongs to the imaginary axis. Say z2 = it, t ∈ R.
Now, by the Hadamard factorization theorem, the infinite product expansion holds,

∣∣∣∣f (zx)

g(z)

∣∣∣∣ =
∞∏

n=1

∣∣∣∣∣∣
(
1 − itx2

ζ 2
n

)
(
1 − it

λ2
n

)
∣∣∣∣∣∣ =

∞∏
n=1


1 + t2x4

ζ 4
n

1 + t2

λ4
n




1
2

and the hypothesis λn � ζn together with x � 1 implies

1 + t2x4

ζ 4
n

1 + t2

λ4
n

� 1.

Now, clearly

|f (zx)| � |g(z)|.
From this we infer that the function h is bounded on the sides of an angle of opening π

2 .
Applying the Phragmén–Lindelöf theorem with σ = 2 it follows that h is bounded in the
complex plane and, as before, it is a constant. �

3.1. Sets of Bessel functions

Theorem 2 can be applied to the classical Bessel function. The Bessel function of order
ν > −1 is defined by the power series

Jν(x) =
∞∑

n=0

(−1)n

n!�(ν + n + 1)

(x

2

)ν+2n

.

The function (x/2)−νJν(x) is an entire function of order one and it is well known that their
zeros {jnν} are all real and simple. It is well known that the system {Jν(xjnν)} is orthogonal and
complete in L(0, 1) and Boas and Pollard made in [8] an extensive discussion of completeness
properties of sets in the form {Jν(xλn)}. We make yet another contribution to this topic via
the next example.

Example 4. Let α, ν > 0 such that α < ν. The sequence {Jν(xjnα)} is then complete L(0, 1).
Consider f (x) = (x/2)−νJν(x) and g(x) = (x/2)−αJα(x). Both f and g are entire

functions of the form considered in theorem 2, with

an = 1

22nn!�(ν + n + 1)
, bn = 1

22nn!�(α + n + 1)
.

The identity �(x + n + 1) = �(x)(x)n+1 implies

an

bn

= �(α + n + 1)

�(ν + n + 1)
= �(α)(α)n+1

�(ν)(ν)n+1
→ 0.

Furthermore, it is a well-known fact from the theory of Bessel functions [22, p 508] that if
α < ν then jnα < jnν for all n.

4. Uncertainty principles over q-linear grids

As we have pointed out in the introduction, underlying the uncertainty principle, there is the
general idea that a function and its transform cannot be both too small. A simple manifestation
of this principle usually occurs when a function f and its transform f ˆ have both bounded
support (here we will consider the notion of support in an ‘almost everywhere’ sense: a
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function is said to be supported on a set A if it vanishes almost everywhere outside A).
If the measure is continuous, then the transform is analytic and vanishes in a set with an
accumulation point. Therefore it must vanish identically. If we have an inversion formula
then f also vanishes identically. This is the case of the Fourier and the Hankel transform.

When dealing with discrete versions of uncertainty principles one often finds changes that
go beyond formal considerations. For instance, since we are dealing with almost everywhere
supports, the discrete analogue of ‘vanishing outside an interval’ is ‘vanishing at the points
that support a discrete measure outside an interval’. The analytic function argument used
above will then fail, given the measure has no accumulation point outside the interval. It may
simply happen that the transform is not vanishing in a sufficiently coarse set (in particular, no
accumulation point) to make the function vanish.

A particularly significative example occurs when considering a measure supported on the
integer powers of a real number q ∈ [0, 1], like Jackson’s q-integral between 0 and ∞. The
support of the measure is {qn}∞n=−∞ which has zero as the only accumulation point. Split
this support into two grids: the one with positive powers of q accumulates at zero. The other
consists in negative powers of q, the gap between the points increasing at a geometrical rate.
Given the sparsity of the grid {qn}0

n=−∞, we might be sceptical about the fact that simultaneous
vanishing of f and its q-discrete transform in such a set is enough to force vanishing at the
remaining support points of the measure. However, in the case of a certain q-discrete transform
whose kernel is the third Jackson q-Bessel function, we will see in theorem 3 that this is indeed
the case.

4.1. The q-Hankel transform

Follow Koornwinder and Swarttouw [18], and define a q-Hankel transform setting(
Hν

q f
)
(x) =

∫ ∞

0
(xt)

1
2 J (3)

ν (xt; q2)f (t) dq t. (28)

It was shown in [18] that the q-Hankel transform satisfies the inversion formula

f (t) =
∫ ∞

0
(xt)

1
2
(
Hν

q f
)
(x)J (3)

ν (xt; q2) dqx = (
Hν

q

(
Hν

q f
))

(t) (29)

where t takes the values qk, k = 0,±1,±2, . . . . Since the transform Hν
q is self-inverse, it

provides a Hilbert space isometry between L2
q(0, 1) and the space

PWν
q =

{
f ∈ L2

q(R
+) : f (x) =

∫ 1

0
(tx)

1
2 J (3)

ν (xt; q2)u(t) dq t, u ∈ L2
q(0, 1)

}
. (30)

This space was defined in [1] as the q-Bessel version of the Paley–Wiener space of bandlimited
functions and it was recognized as being a reproducing kernel Hilbert space, with an associated
q-sampling theorem.

4.2. A vanishing theorem for the q-Hankel transform

The vanishing theorem for the q-Hankel transform is now a simple consequence of the
completeness result on sets of third q-Bessel functions.

Theorem 3. Let f ∈ Lq(R
+) such that both f and its q-Hankel transform vanish at the points

q−n, n = 0, 1, . . . . Then

f (qk) = 0, k = 0,±1,±2, . . .

that is, f vanishes in the equivalent classes of Lq(R
+).
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Proof. Let f ∈ Lq(R+). If f (q−n) = 0, n = 0, 1, . . ., then the q-Hankel transform of f

is

Hν
q f (ω) =

∫ 1

0
(ωt)

1
2 J (3)

ν (ωt; q2)f (t) dq t. (31)

Since our second assumption says that
(
Hν

q f
)
(q−n) = 0, n = 0, 1, . . ., if we set ω = q−n in

(31), the result is∫ 1

0
(q−nt)

1
2 J (3)

ν (q−nt; q2)f (t)dqt = 0, n = 0, 1, . . . . (32)

Now we have from example 3 (b) that, if ν > −1, then the sequence
{
J (3)

ν (q−nt; q2)
}

is complete in L1
q(0, 1). Therefore, conditions (32) imply f ≡ 0 in L1

q(0, 1), that is,
f (qn) = 0, n = 0, 1, . . . . Since, by hypothesis, f (q−n) = 0, n = 0, 1, . . ., the result
follows. �

The vanishing theorem has a prompt consequence when seen in terms of PWν
q .

Corollary 1. � = {q−n, n ∈ N} is a set of uniqueness for the space PWν
q .

Proof. Take f ∈ PWν
q such that f (q−n) = 0, n = 1, 2, . . . . If f is of the form required in

(30) then f = Hν
q u∗ where u∗ ∈ L2

q(R
+) is obtained from u ∈ L2

q(0, 1) by prescribing
u(q−n) = 0, n ∈ N. By the inversion formula (29), u∗ = Hν

q f . We conclude that
Hν

q f (q−n) = 0, n = 0, 1, . . . . By theorem 3, f ≡ 0. �

Remark 1. Observe that, if
(
Hν

q f
)
(q−n) = 0, n ∈ N , taking into account definitions (14)

and (15) then f = (
Hν

q

(
Hν

q f
))

is of the form required in (30). The argument in proof of
corollary 1 shows the following characterization of PWν

q :

PWν
q = {

f ∈ L2
q(R

+) :
(
Hν

q f
)
(q−n) = 0, n = 1, 2, . . .

}
.

The property
(
Hν

q f
)
(q−n) = 0, n = 0, 1, . . . can thus be seen as a sort of ‘q-Hankel-

bandlimitedness’. It was shown in [1] that there are many features in this space analogous to
the classical Paley Wiener space, including a sampling theorem and a reproducing kernel.

Remark 2. If ν > 0, y > − 1
2 and x ∈ R+, the following q-analogue of the Sonine integral

was proved in [1]:

(q; q)∞
(qν; q)∞

x−νJy+ν(x; q) =
∫ 1

0
t

y

2
(tq; q)∞
(tqν; q)∞

Jy

(
xt

1
2 ; q

)
dq t, (33)

using this formula we have seen that, if α > ν > − 1
2 , the function f (x) = xν−α+ 1

2 Jα(x; q2)

belongs to the space PWν
q and its image via the q-Hankel transform, in the space L2

q(0, 1), is
the function

u(t) = (1 + q)tν+ 1
2
(q2α−2ν; q2)∞(t2q2; q2)∞
(q2; q2)∞(t2q2α−2ν; q2)∞

.

Observe that the condition
(
Hν

q f
)
(q−n) = u(q−n) = 0, n = 1, 2, . . . is clearly satisfied. The

function f is thus an example of a q-bandlimited function.

Remark 3. A signal theoretical interpretation follows from corollary 1: if we identify a
function f with its representant in the equivalent classes of L1

q(R
+), we can think about f as

a discrete signal with points

{. . . , f (qn), . . . , f (q), f (1), f (q−1), . . . , f (q−n), . . .}.
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If a signal f ∈ PWν
q is transmitted along a channel, and any set of points contained in

{. . . , f (qn), . . . , f (q), f (1)} is ‘lost’, then the received signal g still contains the whole
information about f . To prove this, observe that f − g ∈ PWν

q vanishes on a set containing
� = {q−n, n ∈ N}. By corollary 1, f = g. Similar ideas were explored in [11], in the context
of bandlimited signals with missing segments on time domain and in the recovery of sparse
discrete finite signals with missing samples.

4.3. An uncertainty principle with ε’s

To complete our discussion on uncertainty principles for the q-Hankel transform, we will now
lose contact with the completeness concept that has been our unifying theme until so far, and
borrow ideas from modern signal analysis.

The notion of ε-concentration is required in order to obtain information of a more
quantitative character. A function f ∈ L2(X,µ) such that ‖f ‖L2(X,µ) = 1 is said to be
εT -concentrated in a set T if

‖f − 1T ‖L2(X,µ) � εT . (34)

In [11], Donoho and Stark proved that if a function f of unit L2(R) norm is εT -concentrated
in a measurable set T and its Fourier transform is ε�-concentrated in a measurable set �, then
|T ‖�| � (1 − εT − ε�)2, where ‖ denotes Lebesgue measure. The uncertainty principle of
Donoho and Stark was extended by de Jeu to general bounded integral operators satisfying a
Plancherel theorem [10]. De Jeu’s result is of a very general scope, and it will be stated here
in the degree of generality suitable to our needs.

Theorem A [10] Consider an integral transform defined, for every f ∈ L2(X,µ) by
(Kf )(x) = ∫

X
K(x, t)f (t) dµ(t), mapping L2(X,µ) in itself, and such that there is a

Plancherel theorem for all its range. If f is of unit norm and εT -concentrated in T and
Kf is ε�-concentrated in �, then the following inequality holds:

‖1T ×�K(x, t)‖L2(X,µ) � 1 − εT − ε�. (35)

It is possible to use theorem A to extract more valuable information about the size of the
ε-concentration sets in the case of the q-Hankel transform and obtain an uncertainty principle
of Donoho and Stark style for ε-concentration in sets of the form T = {qn+nT }∞n=0.

Observe that the q-integral over the set (0, qnT ) , nT ∈ Z, is∫ qnT

0
f (t) dq t = (1 − q)

∞∑
n=0

f (qn+nT )qn+nT , (36)

and εT -concentration in a set T = {qn+nT }∞n=0 in the L2
q(R

+) norm becomes, attending to (15)
and (34),

(1 − q)
1
2

nA+1∑
n=−∞

|f (qn)|2q2n � ε2
T .

The uncertainty principle in this context reads as follows.

Theorem 4. If f ∈ L2
q(R

+) of unit norm is εT -concentrated in {qn+nT }∞n=0 and Hν
q f is

ε�-concentrated in {qn+n�}∞n=0, then

nT + n� � 2 logq

[
(q2; q2)2

∞(1 − εT − ε�)
]
.
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Proof. The proof uses the following estimate of the third Jackson q-Bessel function obtained
in [12]. For every x = qk, k = 0,±1, 2, . . . the inequality holds:∣∣J (3)

ν (x; q)
∣∣ � xν

(q; q2)2∞
. (37)

Now observe that if qnT +n� � 1 then the proposition is trivial, since (q2; q2)2
∞ < 1. Thus

we can assume without loss of generalization that qnT +n� < 1. In this case we have xt = qk

for some entire k. Then, use of (37) together with the definition of the q-integral yields, after
applying theorem A to the q-Hankel transform gives

1 − εT − ε� �
∥∥1[0,qnT ]×[0,qn� ](x, t)(xt)

1
2 J (3)

ν (xt; q2)
∥∥

L2
q (R+)×L2

q (R+)

=
∫ qn�

0

[∫ qnT

0

[
(tx)

1
2 J (3)

ν (xt; q2)
]2

dq t

]
dqx

�
∫ qn�

0

∫ qnT

0

[
1

(q; q2)2∞

]2

dq t dqx

= qnT +n�

(q; q2)2∞
.

�
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